Back from the Past and the Future towards Sustainability Part-II

18:00-20:00, 7th March, 2017 @ Chu Hai College of Higher Education

Kazuo IWAMURA

Professor Emeritus, Tokyo City University, CEO, IWAMURA Atelier Inc. Past Vice-president of UIA

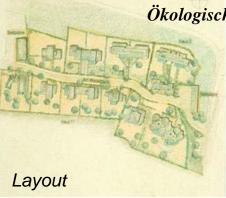
Contents

- 1. London urban issues by the Industrial Revolution
- 2. Edo (Tokyo) as another urban model
- 3. Social experiments in UK towards the Garden City
- 4. Contemporary evolution from the Garden City
 - 4.1 Kassel Ökologische Siedlung, Germany
 - 4.2 IBA Emscherpark, Germany
 - 4.3 Critiba, Brazil
- 5. Urban morphology and sustainability
- 6. Backcasting: Back from the future

4.1 Ökologische Siedlung Kassel, Germany (1984~1993)

Bundes Republik Deutchland Federal Republic of Germany

Ökologische Siedlung Kassel, Germany


Planning together, Building together, Operating & Living together for a Sustainable Future.

An ecological settlement, implemented through cooperative design process (application of B-plan)

Pioneering project of co-operative eco-housing

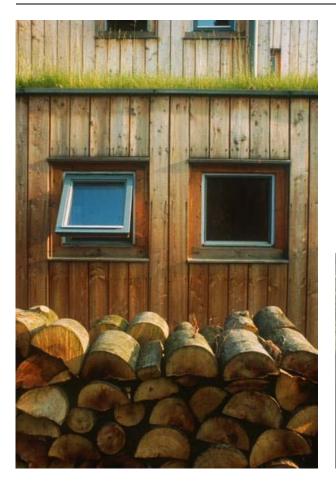
Ökologische Siedlung Kassel (1984~1993)

> Co-operative initiative of the residents for a sustainable community

Development guidelines for the Kassel Okologische Siedlung (as of 1981)

01. Circulate rainwater into the earth	15. Calculate the basic thermal load
02. Reduce land area for street	16. Provide comfortable thermal condition
03. Reduce the amount of storm water	17. Reduce the heat-loss through openings
04. Green the rooftop	18. Design energy-efficient openings
05. Mitigate the wind through greenery	19. Enhance thermal insulation of roof & walls
06. Mitigate the heat load through greenery	20. Attach a green house for thermal use
07. Clean the air through greenery	21. Reduce basement construction
08. Provide passive solar solutions	22. Design a compact plan
09. Reduce the heat-loss by ventilation	23. Bring together the service pipes
10. Provide thermal buffer-zones	24. Use rainwater for flushing toilets
11. Install healthy heating system	25. Use rainwater for watering greenery
12. Select safe and healthy materials	26. Support to reduce household waste
13. Install healthy heating system	27. Provide kitchen gardens
14. Install energy-efficient heating system	28. Encourage DIY

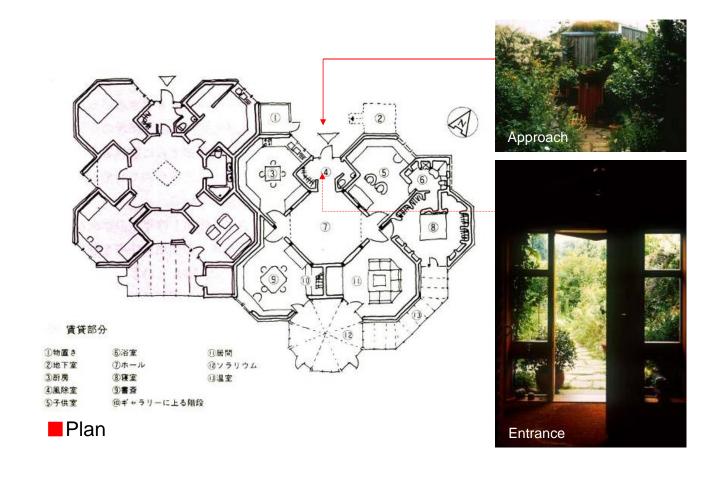
Ökologische Siedlung Kassel: Along the street


Ökologische Siedlung Kassel: Community meeting

Ökologische Siedlung Kassel: Haus HEGGER

Ökologische Siedlung Kassel: Haus HEGGER

Wood & Green


Ökologische Siedlung Kassel: Haus HEGGER as of 2000

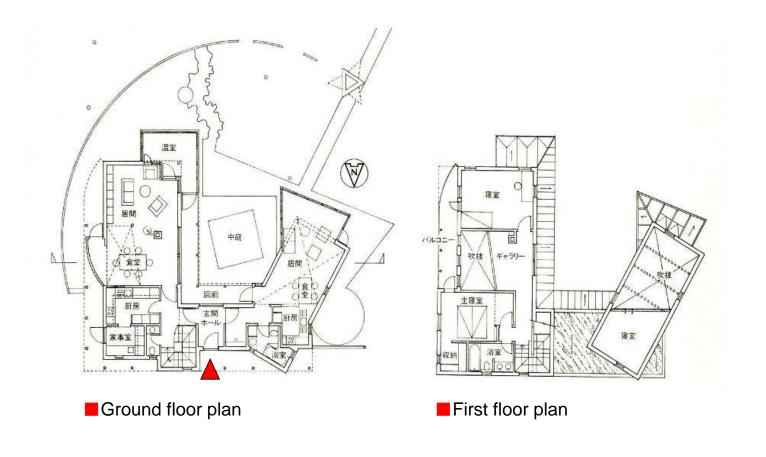
Ökologische Siedlung Kassel: Haus MINKE

Ökologische Siedlung Kassel: Haus MINKE

Ökologische Siedlung Kassel: Haus MINKE

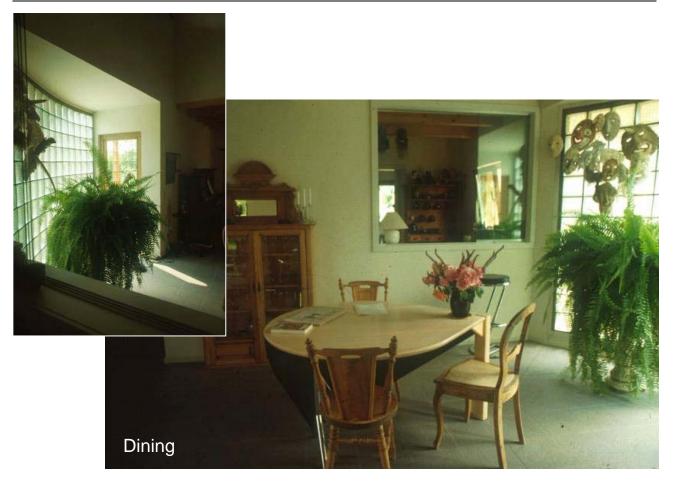
■Topside light

∎Hall



∎Hall

Ökologische Siedlung Kassel: Haus WAMURA


Ökologische Siedlung Kassel: Haus WAMURA

Ökologische Siedlung Kassel: Haus WAMURA

Ökologische Siedlung Kassel: Haus WAMURA

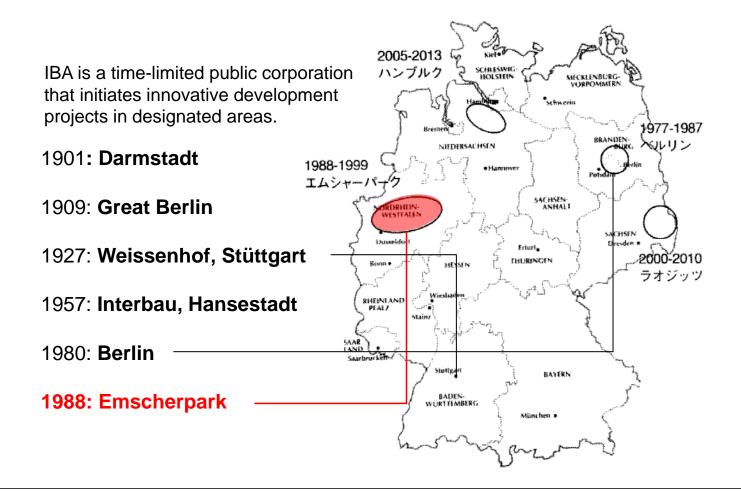
Ökologische Siedlung Kassel: Haus IWAMURA

t Haus IWAMURA, 2007

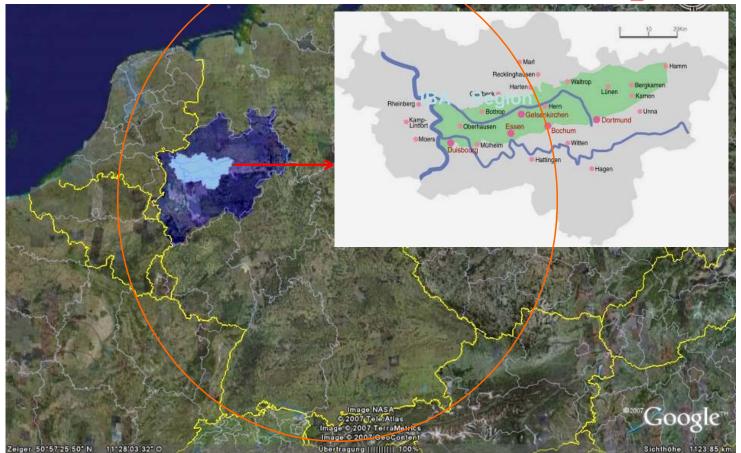
4.2 IBA Emscherpark

Monumental rehabilitation of towns and region along the Emscher river, NRW, Germany

IBA: Internationale Bauaustellung (International Building Exhibition)

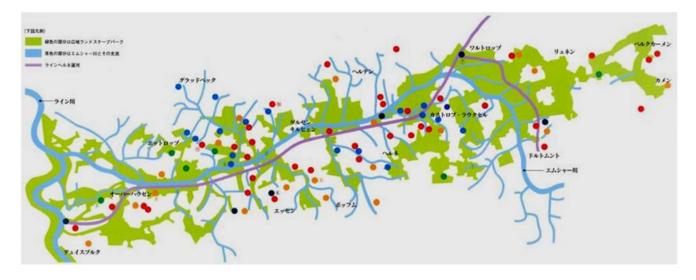


1


Route der Industriekultur. Strukturwandel als Attraktion

History of urban innovations through IBA

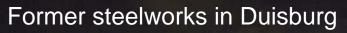
Project area of the IBA Emscherpark


Route der Industriekultur. Strukturwandel als Attraktion

IBA

Rehabilitation of the Ruhr industrial region as a joint initiative of EU and Germany

Rehabilitation of the Emscher and its green zones
 Invitation of new industries of the 21st Century
 Provision of comfortable housing



Outline of the IBA Emscherpark projects

	Theme	Project target	Number of projects
1	Landscape park: Improvement of land structure and landscape	Wide range provision of greenery and parks	15
2	Rehabilitation of eco-system of the Emscher water system	Provision of sewer system Rehabilitation of nature around the river	07
3	Creation of the regional cultural media using industrial heritage of modernization	Preservation and utilization of coal mines and steelworks	12
4	Reutilization of industrial idle sites as work places	Soil purification and redevelopment of industrial idle sites in urban areas	20
5	Provision of housing as contemporary Garden City	Rehabilitation and new construction of housing settlements	21
6	Introduction of new social systems associated with community development	Provision of public service facilities Town management through residents' participatory programs	14

Project data:

Designated area: ca.800km², Population: 2,5million p., Number of cities: 17 Amount of investment: 3500 millionUS\$(Public sector: 2/3, Private sector: 1/3)

Route der Industriekultur. Strukturwandel als Attraktion

Ministerium für Bauen und Verkehr des Landes Nordrhein-Westfale

Emscher Landscape Park

Steelworks in Meiderich, Duisburg

Conversion of the former industrial site to a cultural site

Open-air stage built on the site of former steelworks

Rehabilitation of the Emscher

Teutoburgia-Siedlung, Herne

Originally built for coal-miners in 1909-1923

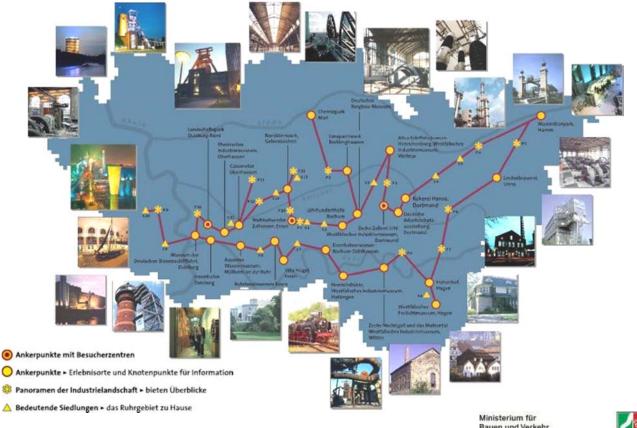
After the refurbishment

Teutoburgia-Siedlung, Herne

Landscape Park in Duisburg, NRW

Route der Industriekultur. Strukturwandel als Attraktion

Ministerium für Bauen und Verkehr des Landes Nordrhein-Westfalen

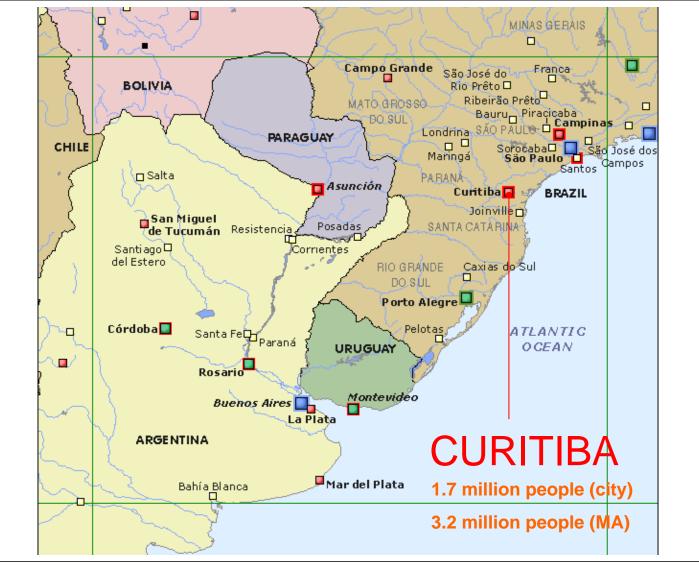

Inner Harbor of Duisburg, NRW

Route der Industriekultur. Strukturwandel als Attraktion

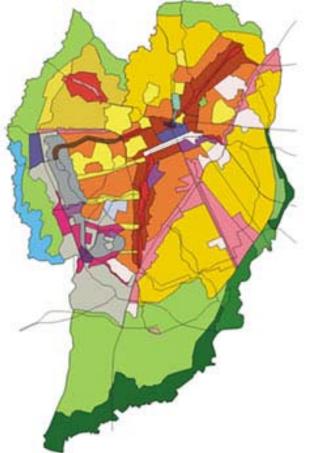
Visiting route of the industrial culture spots

Route der Industriekultur. Strukturwandel als Attraktion


Ministerium für Bauen und Verkehr des Landes Nordrhein-Westfalen


Serpentine pedestrian bridge

4.3 CURITIBA


One of the most successful urban developments for sustainability

Past Mayor: Jaime Lerner

The Zoning and Land Use Act, 1975

PHYSICAL STRUCTURE

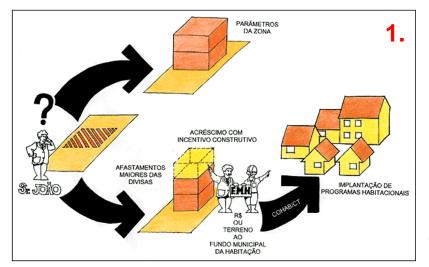
Organized land use was implemented as an urban planning mechanism. Zoning for specific purposes and occupation parameters guided investments and organized public and private activities.

Law 5.234/75 defined land use in Curitiba. It created residential areas, with different population density rates; recovery areas; special zoning for services, manufacturing, and rural activities.

It defined structural sectors; pedestrian areas; natural preservation areas, riverside preservation areas; parks; and the Historical District.

Three key words of the environmental urban development of CURITIBA:

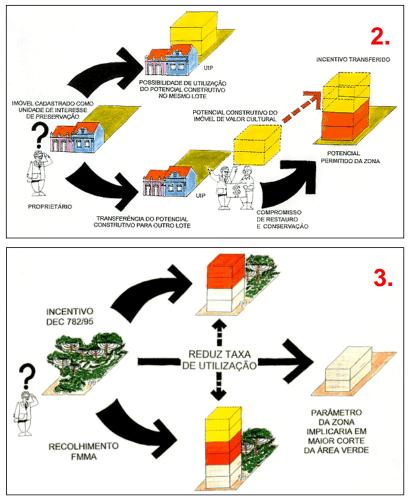
1) Mobility


- 2) Sustainability
- 3) Identity

Building Rights Transfer Act

The country's democratization process also provided conditions for increasing artistic and cultural activities during that decade which, in turn, led to a greater demand for cultural facilities.

1982 witnesses the creation of one of the most important incentive instruments for city development: the Building Rights Transfer Act.


This law gave a new impetus to the city's process of preservation of its historic, cultural, and architectural heritage.

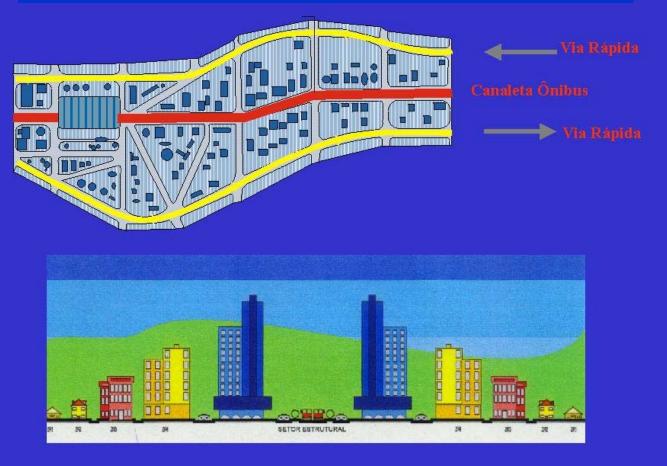
Fund provision for social housing

Building Rights Transfer Act-1:

an incentive for implementing Social Interest Housing Programs

Preservation of cultural heritage

Building Rights Transfer Act-2,


designed to preserve the city's historical, cultural, and architectural heritage

Preservation of urban greenery

Building Rights Transfer Act-3,

designed for the preservation of the city's green areas.

1) Mobility: Public Transport System

Explicit urban axis and the bus system

Central urban axe with the exclusive omnibus service lanes of both direction

Bus terminal associated with public facilities

Evolution of the public bus system

1974

A A A

1977

1991 1995

2000

120 Km Pedestrian and cycling roads

Car free mall in the down town shopping area

CURITIB

2) Sustainability

Environmental policies regarding green and water

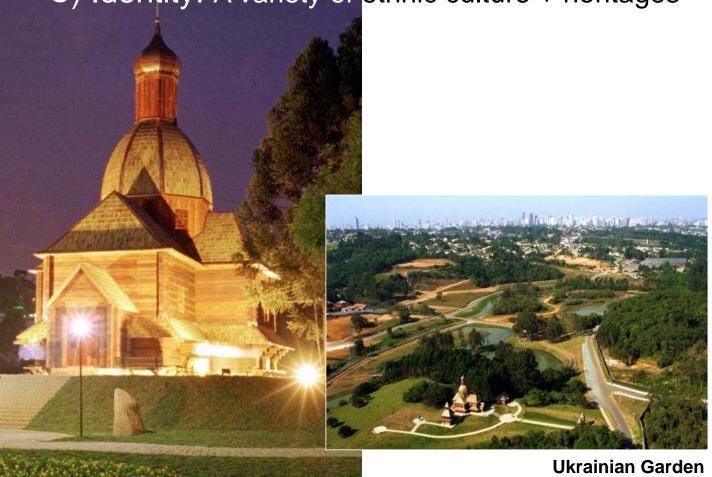
ling er

Green area per capita=51.50mໍ

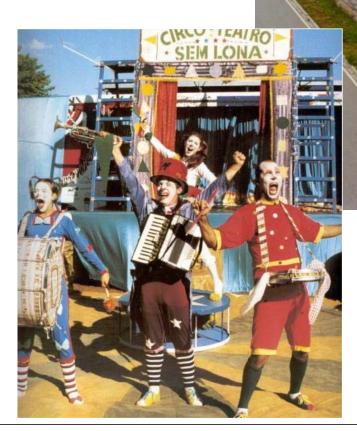
SISTEMA DE UNIDADES DE CONSERVAÇÃO

51,50 m² de área verde por habitante

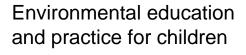
Rehabilitated water front



Environment College for citizens, built with telegraph poles



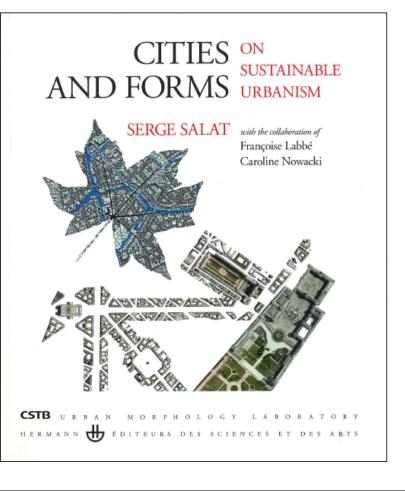
From the powder magazine to a theater



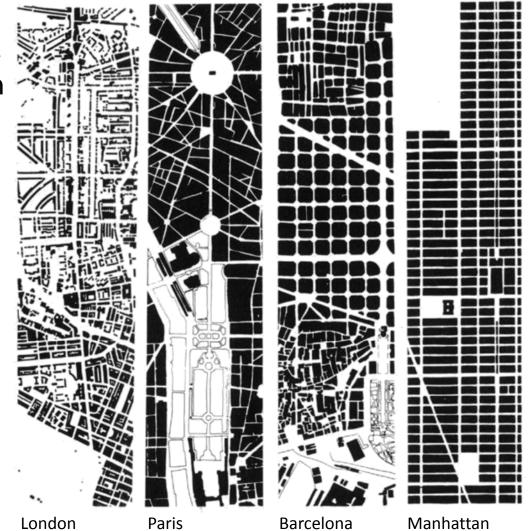
Exchange system of sorted wastes for vegetables

Caravan of environmental education

For children of the future



Urban Morphology and Sustainability


A state-of-the-art comprehensive research in depth regarding Urban Morphology and Urban Sustainability


This may provide a new breakthrough towards integrated approach of form and environmental performance in city scale.

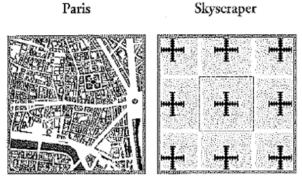
Chinese edition is available.

Urban tissues in comparison

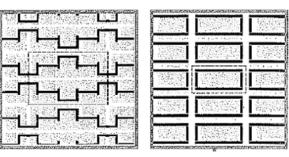
La Ville Radieuse by Le Corbusier, 1925

The answer is the latter!

Typical Hausmnian pattern of Paris


Which urban model is more resource-efficient?

Le Corbusier's modernism of the 20th century or Hausmanian of the 19th century?


Metrics for comparison

- 1. Energy 1.1 Heating needs
 - 1.2 Average U-value
- 2. Form coefficient
 - 2.1 Volumetric compactness
 - 2.2 Form factor
- 3. Density
 - 3.1 Population density (14m²/inhab)
 - 3.2 Population density (30m²/inhab)
 - 3.3 Built block density
- 4. Solar analysis
 - 4.1 Solar access coefficient
 - 4.2 Solar admittance
- 5. Passive volume
- 6. Street network
 - 6.1 Cyclomatic number
 - 6.2 Average distance between intersections

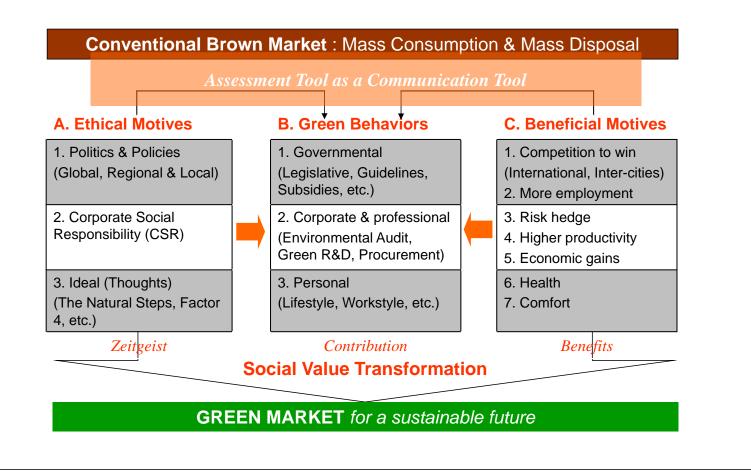
Set-back

Cellular

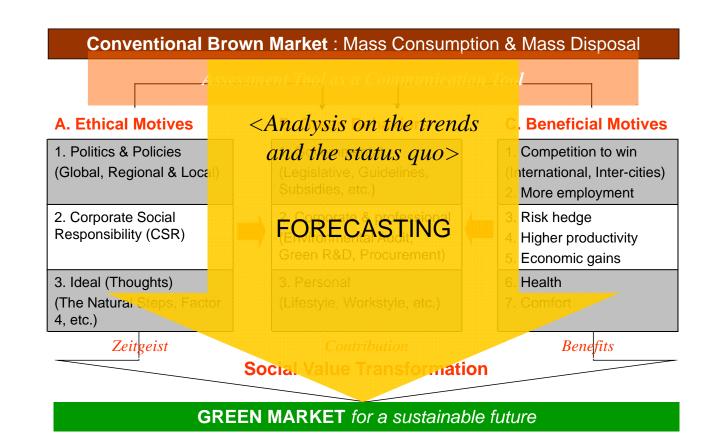
(Source: Serge Salat et.al "Cities and Forms", CSTB, 2011, p198)

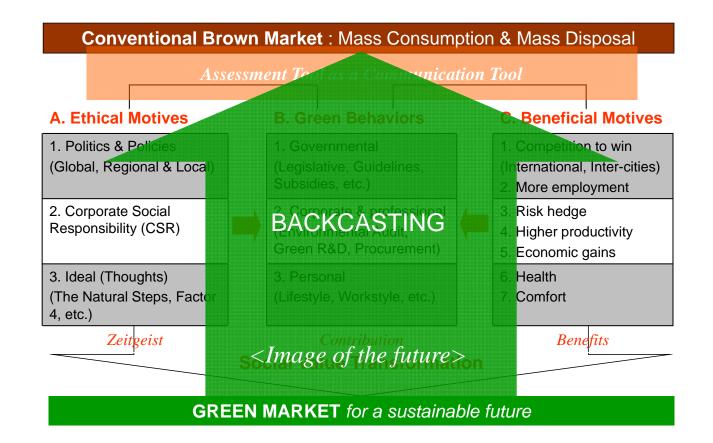
Indicators of Urban Sustainability-1, proposed by Serge SALAT

1. Land use	Human density, Building density, Housing density, Density of legal personalities, Job density, Coefficient of land occupancy Subdivision intensity, Diversity of subdivision size, Diversity of land use, Diversity of subdivision use
2. Mobility	Surface occupied by pedestrian and bicycle paths, Surface occupied by the road network, Proportion of the road network dedicated to public transport, Connectivity of the pedestrian/bike grid, Connectivity of the car grid, Cyclomatic complexity of the car grid, Cyclomatic complexity of the pedestrian/bike grid Average distance between intersections Proportion of the population more than 300m away from a public transport stop Number of public transport modes accessible within 300m Fractality of the street network
3. Water management	Hydrological intensity, Impermeability of land, Intensity of water treatment, Efficiency of water use, Accessibility of drinking water
4. Biodiversity	Proportion of agricultural surfaces, Proportion of green fabric Connectivity of housing Distribution of green spaces


Indicators in red are related to urban form. Source: Serge Salat et.al "Cities and Forms", CSTB, 2011, pp486-498 Indicators of Urban Sustainability-2, proposed by Serge SALAT

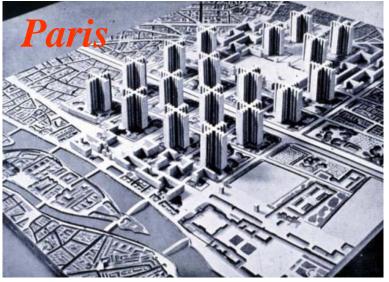
Energy intensity per resident, Surface energy intensity, Proportion of local production, Rate of renewable energy used, Rate of energy reuse Volumetric compactness, Size factor, Form factor, Rate of passive volume, Energy consumed for heating, Energy consumed for air- conditioning Complexity of buildings in relation to the energy consumed by the buildings, Comparison of the complexity of the urban network and transportation energy
Proportion of jobs in relation to housing, Proportion of social housing Diversity of ages, Diversity of incomes
Resource productivity, Intensity of learning activities, Job potential Structural diversity of jobs, Structural diversity of uses Proximity of convenient stores Distance of the distribution of each district from the global distribution of facilities Complexity of fabric of activity
Noise pollution, Intensity of cultural activities Proximity of leisure facilities
Proportion of recycled materials, Productivity of urban metabolism, Intensity of GHG emissions per resident, Intensity of emissions to produce wealth
-


Indicators in red are related to urban form. Source: Serge Salat et.al "Cities and Forms", CSTB, 2011, pp486-498


Market Transformation towards Green Market

Market Transformation towards Green Market

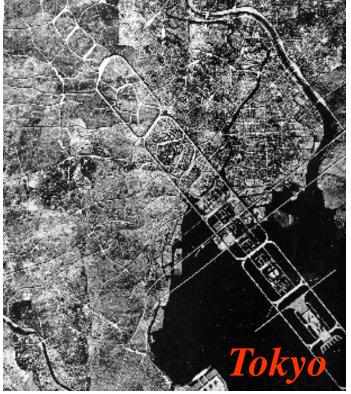
Market Transformation towards Green Market



Forecasting vs Backcasting

'Backcasting' is a technique that often is pointed out as an opposite to 'forecasting'.
It involves identification of a particular scenario and tracing its origins and lines of development back to the present.

The activity of 'backcasting' involves establishing the description of a very definite and very specific future situation. It then involves an imaginary moving backwards in time, step-by-step, in as many stages as are considered necessary, from the future to the present, in order to reveal the mechanism through which that particular specified future could be attained from the present.


(Source: Wikipedia "Thought Experiments")

Le Corbusier, 1925

Backcasting by great architects of the 20th Century

Kenzo Tange, 1960

What is an alternative vision for *'backcasting*' the 21st Century?

How does it look like?

Who will make it and how?

Thanks for your attention.

Kazuo IWAMURA iwamura@iwamura-at.com